1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
use super::{private::SealedItem, ParseError, Typecode};
use crate::kind;

use std::convert::{TryFrom, TryInto};

/// The set of known Receivers for Unified Addresses.
#[derive(Clone, Debug, PartialEq, Eq, Hash)]
pub enum Receiver {
    Orchard([u8; 43]),
    Sapling(kind::sapling::Data),
    P2pkh(kind::p2pkh::Data),
    P2sh(kind::p2sh::Data),
    Unknown { typecode: u32, data: Vec<u8> },
}

impl TryFrom<(u32, &[u8])> for Receiver {
    type Error = ParseError;

    fn try_from((typecode, addr): (u32, &[u8])) -> Result<Self, Self::Error> {
        match typecode.try_into()? {
            Typecode::P2pkh => addr.try_into().map(Receiver::P2pkh),
            Typecode::P2sh => addr.try_into().map(Receiver::P2sh),
            Typecode::Sapling => addr.try_into().map(Receiver::Sapling),
            Typecode::Orchard => addr.try_into().map(Receiver::Orchard),
            Typecode::Unknown(_) => Ok(Receiver::Unknown {
                typecode,
                data: addr.to_vec(),
            }),
        }
        .map_err(|e| {
            ParseError::InvalidEncoding(format!("Invalid address for typecode {}: {}", typecode, e))
        })
    }
}

impl SealedItem for Receiver {
    fn typecode(&self) -> Typecode {
        match self {
            Receiver::P2pkh(_) => Typecode::P2pkh,
            Receiver::P2sh(_) => Typecode::P2sh,
            Receiver::Sapling(_) => Typecode::Sapling,
            Receiver::Orchard(_) => Typecode::Orchard,
            Receiver::Unknown { typecode, .. } => Typecode::Unknown(*typecode),
        }
    }

    fn data(&self) -> &[u8] {
        match self {
            Receiver::P2pkh(data) => data,
            Receiver::P2sh(data) => data,
            Receiver::Sapling(data) => data,
            Receiver::Orchard(data) => data,
            Receiver::Unknown { data, .. } => data,
        }
    }
}

/// A Unified Address.
#[derive(Clone, Debug, PartialEq, Eq, Hash)]
pub struct Address(pub(crate) Vec<Receiver>);

impl super::private::SealedContainer for Address {
    /// The HRP for a Bech32m-encoded mainnet Unified Address.
    ///
    /// Defined in [ZIP 316][zip-0316].
    ///
    /// [zip-0316]: https://zips.z.cash/zip-0316
    const MAINNET: &'static str = "u";

    /// The HRP for a Bech32m-encoded testnet Unified Address.
    ///
    /// Defined in [ZIP 316][zip-0316].
    ///
    /// [zip-0316]: https://zips.z.cash/zip-0316
    const TESTNET: &'static str = "utest";

    /// The HRP for a Bech32m-encoded regtest Unified Address.
    const REGTEST: &'static str = "uregtest";

    fn from_inner(receivers: Vec<Self::Item>) -> Self {
        Self(receivers)
    }
}

impl super::Encoding for Address {}
impl super::Container for Address {
    type Item = Receiver;

    fn items_as_parsed(&self) -> &[Receiver] {
        &self.0
    }
}

#[cfg(test)]
pub(crate) mod test_vectors;

#[cfg(test)]
mod tests {
    use assert_matches::assert_matches;
    use zcash_encoding::MAX_COMPACT_SIZE;

    use crate::{
        kind::unified::{private::SealedContainer, Container, Encoding},
        Network,
    };

    use proptest::{
        array::{uniform11, uniform20, uniform32},
        collection::vec,
        prelude::*,
        sample::select,
    };

    use super::{Address, ParseError, Receiver, Typecode};

    prop_compose! {
        fn uniform43()(a in uniform11(0u8..), b in uniform32(0u8..)) -> [u8; 43] {
            let mut c = [0; 43];
            c[..11].copy_from_slice(&a);
            c[11..].copy_from_slice(&b);
            c
        }
    }

    fn arb_transparent_typecode() -> impl Strategy<Value = Typecode> {
        select(vec![Typecode::P2pkh, Typecode::P2sh])
    }

    fn arb_shielded_typecode() -> impl Strategy<Value = Typecode> {
        prop_oneof![
            Just(Typecode::Sapling),
            Just(Typecode::Orchard),
            ((<u32>::from(Typecode::Orchard) + 1)..MAX_COMPACT_SIZE).prop_map(Typecode::Unknown)
        ]
    }

    /// A strategy to generate an arbitrary valid set of typecodes without
    /// duplication and containing only one of P2sh and P2pkh transparent
    /// typecodes. The resulting vector will be sorted in encoding order.
    fn arb_typecodes() -> impl Strategy<Value = Vec<Typecode>> {
        prop::option::of(arb_transparent_typecode()).prop_flat_map(|transparent| {
            prop::collection::hash_set(arb_shielded_typecode(), 1..4).prop_map(move |xs| {
                let mut typecodes: Vec<_> = xs.into_iter().chain(transparent).collect();
                typecodes.sort_unstable_by(Typecode::encoding_order);
                typecodes
            })
        })
    }

    fn arb_unified_address_for_typecodes(
        typecodes: Vec<Typecode>,
    ) -> impl Strategy<Value = Vec<Receiver>> {
        typecodes
            .into_iter()
            .map(|tc| match tc {
                Typecode::P2pkh => uniform20(0u8..).prop_map(Receiver::P2pkh).boxed(),
                Typecode::P2sh => uniform20(0u8..).prop_map(Receiver::P2sh).boxed(),
                Typecode::Sapling => uniform43().prop_map(Receiver::Sapling).boxed(),
                Typecode::Orchard => uniform43().prop_map(Receiver::Orchard).boxed(),
                Typecode::Unknown(typecode) => vec(any::<u8>(), 32..256)
                    .prop_map(move |data| Receiver::Unknown { typecode, data })
                    .boxed(),
            })
            .collect::<Vec<_>>()
    }

    fn arb_unified_address() -> impl Strategy<Value = Address> {
        arb_typecodes()
            .prop_flat_map(arb_unified_address_for_typecodes)
            .prop_map(Address)
    }

    proptest! {
        #[test]
        fn ua_roundtrip(
            network in select(vec![Network::Main, Network::Test, Network::Regtest]),
            ua in arb_unified_address(),
        ) {
            let encoded = ua.encode(&network);
            let decoded = Address::decode(&encoded);
            prop_assert_eq!(&decoded, &Ok((network, ua)));
            let reencoded = decoded.unwrap().1.encode(&network);
            prop_assert_eq!(reencoded, encoded);
        }
    }

    #[test]
    fn padding() {
        // The test cases below use `Address(vec![Receiver::Orchard([1; 43])])` as base.

        // Invalid padding ([0xff; 16] instead of [0x75, 0x00, 0x00, 0x00...])
        let invalid_padding = [
            0xe6, 0x59, 0xd1, 0xed, 0xf7, 0x4b, 0xe3, 0x5e, 0x5a, 0x54, 0x0e, 0x41, 0x5d, 0x2f,
            0x0c, 0x0d, 0x33, 0x42, 0xbd, 0xbe, 0x9f, 0x82, 0x62, 0x01, 0xc1, 0x1b, 0xd4, 0x1e,
            0x42, 0x47, 0x86, 0x23, 0x05, 0x4b, 0x98, 0xd7, 0x76, 0x86, 0xa5, 0xe3, 0x1b, 0xd3,
            0x03, 0xca, 0x24, 0x44, 0x8e, 0x72, 0xc1, 0x4a, 0xc6, 0xbf, 0x3f, 0x2b, 0xce, 0xa7,
            0x7b, 0x28, 0x69, 0xc9, 0x84,
        ];
        assert_eq!(
            Address::parse_internal(Address::MAINNET, &invalid_padding[..]),
            Err(ParseError::InvalidEncoding(
                "Invalid padding bytes".to_owned()
            ))
        );

        // Short padding (padded to 15 bytes instead of 16)
        let truncated_padding = [
            0x9a, 0x56, 0x12, 0xa3, 0x43, 0x45, 0xe0, 0x82, 0x6c, 0xac, 0x24, 0x8b, 0x3b, 0x45,
            0x72, 0x9a, 0x53, 0xd5, 0xf8, 0xda, 0xec, 0x07, 0x7c, 0xba, 0x9f, 0xa8, 0xd2, 0x97,
            0x5b, 0xda, 0x73, 0x1b, 0xd2, 0xd1, 0x32, 0x6b, 0x7b, 0x36, 0xdd, 0x57, 0x84, 0x2a,
            0xa0, 0x21, 0x23, 0x89, 0x73, 0x85, 0xe1, 0x4b, 0x3e, 0x95, 0xb7, 0xd4, 0x67, 0xbc,
            0x4b, 0x31, 0xee, 0x5a,
        ];
        assert_eq!(
            Address::parse_internal(Address::MAINNET, &truncated_padding[..]),
            Err(ParseError::InvalidEncoding(
                "Invalid padding bytes".to_owned()
            ))
        );
    }

    #[test]
    fn truncated() {
        // The test cases below start from an encoding of
        //     `Address(vec![Receiver::Orchard([1; 43]), Receiver::Sapling([2; 43])])`
        // with the receiver data truncated, but valid padding.

        // - Missing the last data byte of the Sapling receiver.
        let truncated_sapling_data = [
            0xaa, 0xb0, 0x6e, 0x7b, 0x26, 0x7a, 0x22, 0x17, 0x39, 0xfa, 0x07, 0x69, 0xe9, 0x32,
            0x2b, 0xac, 0x8c, 0x9e, 0x5e, 0x8a, 0xd9, 0x24, 0x06, 0x5a, 0x13, 0x79, 0x3a, 0x8d,
            0xb4, 0x52, 0xfa, 0x18, 0x4e, 0x33, 0x4d, 0x8c, 0x17, 0x77, 0x4d, 0x63, 0x69, 0x34,
            0x22, 0x70, 0x3a, 0xea, 0x30, 0x82, 0x5a, 0x6b, 0x37, 0xd1, 0x0d, 0xbe, 0x20, 0xab,
            0x82, 0x86, 0x98, 0x34, 0x6a, 0xd8, 0x45, 0x40, 0xd0, 0x25, 0x60, 0xbf, 0x1e, 0xb6,
            0xeb, 0x06, 0x85, 0x70, 0x4c, 0x42, 0xbc, 0x19, 0x14, 0xef, 0x7a, 0x05, 0xa0, 0x71,
            0xb2, 0x63, 0x80, 0xbb, 0xdc, 0x12, 0x08, 0x48, 0x28, 0x8f, 0x1c, 0x9e, 0xc3, 0x42,
            0xc6, 0x5e, 0x68, 0xa2, 0x78, 0x6c, 0x9e,
        ];
        assert_matches!(
            Address::parse_internal(Address::MAINNET, &truncated_sapling_data[..]),
            Err(ParseError::InvalidEncoding(_))
        );

        // - Truncated after the typecode of the Sapling receiver.
        let truncated_after_sapling_typecode = [
            0x87, 0x7a, 0xdf, 0x79, 0x6b, 0xe3, 0xb3, 0x40, 0xef, 0xe4, 0x5d, 0xc2, 0x91, 0xa2,
            0x81, 0xfc, 0x7d, 0x76, 0xbb, 0xb0, 0x58, 0x98, 0x53, 0x59, 0xd3, 0x3f, 0xbc, 0x4b,
            0x86, 0x59, 0x66, 0x62, 0x75, 0x92, 0xba, 0xcc, 0x31, 0x1e, 0x60, 0x02, 0x3b, 0xd8,
            0x4c, 0xdf, 0x36, 0xa1, 0xac, 0x82, 0x57, 0xed, 0x0c, 0x98, 0x49, 0x8f, 0x49, 0x7e,
            0xe6, 0x70, 0x36, 0x5b, 0x7b, 0x9e,
        ];
        assert_matches!(
            Address::parse_internal(Address::MAINNET, &truncated_after_sapling_typecode[..]),
            Err(ParseError::InvalidEncoding(_))
        );
    }

    #[test]
    fn duplicate_typecode() {
        // Construct and serialize an invalid UA. This must be done using private
        // methods, as the public API does not permit construction of such invalid values.
        let ua = Address(vec![Receiver::Sapling([1; 43]), Receiver::Sapling([2; 43])]);
        let encoded = ua.to_jumbled_bytes(Address::MAINNET);
        assert_eq!(
            Address::parse_internal(Address::MAINNET, &encoded[..]),
            Err(ParseError::DuplicateTypecode(Typecode::Sapling))
        );
    }

    #[test]
    fn p2pkh_and_p2sh() {
        // Construct and serialize an invalid UA. This must be done using private
        // methods, as the public API does not permit construction of such invalid values.
        let ua = Address(vec![Receiver::P2pkh([0; 20]), Receiver::P2sh([0; 20])]);
        let encoded = ua.to_jumbled_bytes(Address::MAINNET);
        // ensure that decoding catches the error
        assert_eq!(
            Address::parse_internal(Address::MAINNET, &encoded[..]),
            Err(ParseError::BothP2phkAndP2sh)
        );
    }

    #[test]
    fn addresses_out_of_order() {
        // Construct and serialize an invalid UA. This must be done using private
        // methods, as the public API does not permit construction of such invalid values.
        let ua = Address(vec![Receiver::Sapling([0; 43]), Receiver::P2pkh([0; 20])]);
        let encoded = ua.to_jumbled_bytes(Address::MAINNET);
        // ensure that decoding catches the error
        assert_eq!(
            Address::parse_internal(Address::MAINNET, &encoded[..]),
            Err(ParseError::InvalidTypecodeOrder)
        );
    }

    #[test]
    fn only_transparent() {
        // Encoding of `Address(vec![Receiver::P2pkh([0; 20])])`.
        let encoded = vec![
            0xf0, 0x9e, 0x9d, 0x6e, 0xf5, 0xa6, 0xac, 0x16, 0x50, 0xf0, 0xdb, 0xe1, 0x2c, 0xa5,
            0x36, 0x22, 0xa2, 0x04, 0x89, 0x86, 0xe9, 0x6a, 0x9b, 0xf3, 0xff, 0x6d, 0x2f, 0xe6,
            0xea, 0xdb, 0xc5, 0x20, 0x62, 0xf9, 0x6f, 0xa9, 0x86, 0xcc,
        ];

        // We can't actually exercise this error, because at present the only transparent
        // receivers we can use are P2PKH and P2SH (which cannot be used together), and
        // with only one of them we don't have sufficient data for F4Jumble (so we hit a
        // different error).
        assert_matches!(
            Address::parse_internal(Address::MAINNET, &encoded[..]),
            Err(ParseError::InvalidEncoding(_))
        );
    }

    #[test]
    fn receivers_are_sorted() {
        // Construct a UA with receivers in an unsorted order.
        let ua = Address(vec![
            Receiver::P2pkh([0; 20]),
            Receiver::Orchard([0; 43]),
            Receiver::Unknown {
                typecode: 0xff,
                data: vec![],
            },
            Receiver::Sapling([0; 43]),
        ]);

        // `Address::receivers` sorts the receivers in priority order.
        assert_eq!(
            ua.items(),
            vec![
                Receiver::Orchard([0; 43]),
                Receiver::Sapling([0; 43]),
                Receiver::P2pkh([0; 20]),
                Receiver::Unknown {
                    typecode: 0xff,
                    data: vec![],
                },
            ]
        )
    }
}